miércoles, enero 28, 2015

Yitang Zhang: Solving an Unsolvable Math Problem

     
    
By
Unable to get an academic position, Zhang kept the books for a Subway franchise. Credit Photograph by Peter Bohler
I don’t see what difference it can make now to reveal that I passed high-school math only because I cheated. I could add and subtract and multiply and divide, but I entered the wilderness when words became equations and x’s and y’s. On test days, I sat next to Bob Isner or Bruce Gelfand or Ted Chapman or Donny Chamberlain—smart boys whose handwriting I could read—and divided my attention between his desk and the teacher’s eyes. Having skipped me, the talent for math concentrated extravagantly in one of my nieces, Amie Wilkinson, a professor at the University of Chicago. From Amie I first heard about Yitang Zhang, a solitary, part-time calculus teacher at the University of New Hampshire who received several prizes, including a MacArthur award in September, for solving a problem that had been open for more than a hundred and fifty years.
The problem that Zhang chose, in 2010, is from number theory, a branch of pure mathematics. Pure mathematics, as opposed to applied mathematics, is done with no practical purposes in mind. It is as close to art and philosophy as it is to engineering. “My result is useless for industry,” Zhang said. The British mathematician G. H. Hardy wrote in 1940 that mathematics is, of “all the arts and sciences, the most austere and the most remote.” Bertrand Russell called it a refuge from “the dreary exile of the actual world.” Hardy believed emphatically in the precise aesthetics of math. A mathematical proof, such as Zhang produced, “should resemble a simple and clear-cut constellation,” he wrote, “not a scattered cluster in the Milky Way.” Edward Frenkel, a math professor at the University of California, Berkeley, says Zhang’s proof has “a renaissance beauty,” meaning that though it is deeply complex, its outlines are easily apprehended. The pursuit of beauty in pure mathematics is a tenet. Last year, neuroscientists in Great Britain discovered that the same part of the brain that is activated by art and music was activated in the brains of mathematicians when they looked at math they regarded as beautiful.
Zhang’s problem is often called “bound gaps.” It concerns prime numbers—those which can be divided cleanly only by one and by themselves: two, three, five, seven, and so on—and the question of whether there is a boundary within which, on an infinite number of occasions, two consecutive prime numbers can be found, especially out in the region where the numbers are so large that it would take a book to print a single one of them. Daniel Goldston, a professor at San Jose State University; János Pintz, a fellow at the Alfréd Rényi Institute of Mathematics, in Budapest; and Cem Yıldırım, of Boğaziçi University, in Istanbul, working together in 2005, had come closer than anyone else to establishing whether there might be a boundary, and what it might be. Goldston didn’t think he’d see the answer in his lifetime. “I thought it was impossible,” he told me.
Zhang, who also calls himself Tom, had published only one paper, to quiet acclaim, in 2001. In 2010, he was fifty-five. “No mathematician should ever allow himself to forget that mathematics, more than any other art or science, is a young man’s game,” Hardy wrote. He also wrote, “I do not know of an instance of a major mathematical advance initiated by a man past fifty.” Zhang had received a Ph.D. in algebraic geometry from Purdue in 1991. His adviser, T. T. Moh, with whom he parted unhappily, recently wrote a description on his Web site of Zhang as a graduate student: “When I looked into his eyes, I found a disturbing soul, a burning bush, an explorer who wanted to reach the North Pole.” Zhang left Purdue without Moh’s support, and, having published no papers, was unable to find an academic job. He lived, sometimes with friends, in Lexington, Kentucky, where he had occasional work, and in New York City, where he also had friends and occasional work. In Kentucky, he became involved with a group interested in Chinese democracy. Its slogan was “Freedom, Democracy, Rule of Law, and Pluralism.” A member of the group, a chemist in a lab, opened a Subway franchise as a means of raising money. “Since Tom was a genius at numbers,” another member of the group told me, “he was invited to help him.” Zhang kept the books. “Sometimes, if it was busy at the store, I helped with the cash register,” Zhang told me recently. “Even I knew how to make the sandwiches, but I didn’t do it so much.” When Zhang wasn’t working, he would go to the library at the University of Kentucky and read journals in algebraic geometry and number theory. “For years, I didn’t really keep up my dream in mathematics,” he said.
“You must have been unhappy.”
He shrugged. “My life is not always easy,” he said.
With a friend’s help, Zhang eventually got his position in New Hampshire, in 1999. Having chosen bound gaps in 2010, he was uncertain of how to find a way into the problem. “I am thinking, Where is the door?” Zhang said. “In the history of this problem, many mathematicians believed that there should be a door, but they couldn’t find it. I tried several doors. Then I start to worry a little that there is no door.”
“Were you ever frustrated?”
“I was tired,” he said. “But many times I just feel peaceful. I like to walk and think. This is my way. My wife would see me and say, ‘What are you doing?’ I said, ‘I’m working, I’m thinking.’ She didn’t understand. She said, ‘What do you mean?’ ” The problem was so complicated, he said, that “I had no way to tell her.”
According to Deane Yang, a professor of mathematics at the New York University Polytechnic School of Engineering, a mathematician at the beginning of a difficult problem is “trying to maneuver his way into a maze. When you try to prove a theorem, you can almost be totally lost to knowing exactly where you want to go. Often, when you find your way, it happens in a moment, then you live to do it again.”
Keep reading  here >>
 

No hay comentarios:

Publicar un comentario