WASHINGTON – Scientists around the globe are joining those in the United States in becoming alarmed at the possibility of a plasma cloud from a solar superstorm that could wipe out vast electronics networks, because they say Earth would have only a notice of about 15 minutes.
U.S. space scientists at the National Oceanic and Atmospheric Administrator and the National Aeronautic Space Administration’s Goddard Space Flight Center have been expressing concern over what is fast becoming a “solar storm maximum.”
And the alarms now are going off globally, with expressions of concern from European Union interests, the European Space Agency and Great Britain’s Royal Academy of Engineering, which is urging the British Space Weather Board to help that nation prepare for a massive solar flare.
“Our message is, don’t panic, but do prepare – a solar superstorm will happen one day and we need to be ready for it,” said Professor Paul Cannon who chaired the Academy’s working group.
Given the intensity of the increasing flare spewing from the sun’s surface, experts agree that scientists would have only 15 minutes of warning of an intense solar flare – a huge plasma cloud of charged particles that can become a nightmare to unguarded electronics on earth.
Right now, scientists are relying on an ageing satellite called ACE – Advanced Composition Explorer which provides the 15 minutes heads-up.
The concern has been rising as the sun continues spewing out new, massive flares even as Earth moves closer into alignment with the gigantic sun spots producing those flares.
This increased solar activity is occurring as sun spots multiply on the sun’s surface during what is expected to be its most active period, 2012-2013, in its 11-year cycle.
But scientists are worried the ACE satellite could fail, and replacement, called Discover, isn’t expected to be launched by NASA until 2014.
Europe’s ability to monitor space weather is not comprehensive, so radiation monitors and other devices are being added to as many satellites as possible as scientists seek ways to monitor such threats as closely as possible.
Europe has a number of ground-based measurement systems, including magnetometers, neutron monitors, GPS receivers and ionosondes. Some 20 European countries provide ground-based space weather measurements, with France, Germany, Italy and the United Kingdom contributing to reports at the European Space Weather Portal website.
According to Michael Hapgood, who heads the Space Environment at STFC Rutherford Appleton Laboratory in the United Kingdom, the infrastructure for the European space weather community provides valuable information to the space science and engineering community.
However, it also has a number of weaknesses, he said, in which the programs are fragmented, there is limited awareness among decision-makers who ultimately control budgets, poor quality of programs are offered and some still regard space weather as a part of astronomy.
To Hapgood, there also are threats to developing useful information. Because of fragmentation of the programs, it leads to piecemeal funding cuts. Space weather products also compete with other areas of astronomy and many, he said, view space between the planets as empty and therefore harmless.
Since satellites are integral to the infrastructure of the U.S., space weather data becomes critically important to anticipate anomalies and potential failures of the satellites. It also is the first step in making the satellites more resistant to such space weather events.
Indeed, numerous studies have shown a correlation of satellite anomalies with space weather. Most anomalies have occurred during periods of space storms. For example, anomalies experienced in 2003 occurred during the October 2003 Halloween storms.
Richard Fisher, NASA heliophysicist, warns about the damages that solar flares, CME, EMP can cause to Earth.
No hay comentarios:
Publicar un comentario