Meteor astronomer Peter Jenniskens must move quickly to trap evidence of a fresh meteorite fall. In 2008, a small asteroid roughly three meters across struck Earth’s atmosphere over northern Sudan, producing a brilliant fireball in the sky. The asteroid’s orbit had been tracked before striking Earth, upping the chances that searchers would be able to locate pieces of the meteorite on the ground. So Jenniskens traveled to the Nubian Desert to recover fragments, as did dozens of searchers from the University of Khartoum.
Jenniskens recovering a fragment of the Sutter's Mill meteorite |
Jenniskens and other searchers did ultimately locate 77 smaller pieces of the meteorite on the ground, according to a study he and his colleagues published in Science on December 21. The fragments total nearly one kilogram. But that is just a tiny fraction of the original mass of the Sutter’s Mill meteorite—named for the site of one of the finds, in Coloma, Calif. (Sutter’s Mill also happens to be the place where the California Gold Rush began in the mid-1800s.)
Collected samples of the Sutter's Mill meteorite |
In the new study Jenniskens and his colleagues report that the asteroid that hit the atmosphere probably had a mass of some 40,000 kilograms, corresponding to a diameter of 2.5 to four meters. It streaked in from the east before detonating at an altitude of about 48 kilometers, releasing the energy equivalent of four kilotons of TNT in the process, or about one-quarter the yield of the nuclear weapon detonated over Hiroshima. The impact was seen and heard by many witnesses and was even picked up by two infrasonic (low-frequency sound wave) detector stations designed to monitor compliance with the Comprehensive Nuclear Test-Ban Treaty.
Given the violence of the reconstructed atmospheric entry, it’s remarkable that any fragments were recovered at all. Drawing on witnesses’ photos and videos of the fireball, the researchers have calculated that the parent object of the Sutter’s Mill meteorite entered the atmosphere at 28.6 kilometers per second (64,000 mph)—the highest such entry velocity recorded for recovered meteorites.
The recovered chunks revealed the Sutter’s Mill meteorite to be a rare variety called a carbonaceous chondrite. And in this case, rapid recovery proved critical—the researchers’ analysis found notable differences between samples recovered just two days after atmospheric entry and those found a few days later, after heavy rainfall. The rainwater reacted with sulfurous compounds in the meteorite, partly overwriting its original chemical makeup. The rapid alteration of meteorites by terrestrial water, the researchers conclude, “probably erases many vestiges of the internal and external process on the asteroid” and may mean that carbonaceous asteroids are more complex in composition than had been thought.
Photos courtesy NASA/Eric James
No hay comentarios:
Publicar un comentario